Figure E1

Figure E2

Figure E3

1 Online Repository Materials:

2		rtta	TO
Z	ME	LHU	כענ

23

3	Genetic analyses
4	We used a genetics-based approach to identify the molecular defect behind this unusual
5	immunodeficiency with elevated IgE. After obtaining informed consent, DNA samples
6	were collected from either buccal swab or peripheral blood for parents and all four living
7	affected siblings (I.1 to I.4) from Family I, and two affected siblings (II.1 and II.2) from
8	Family II. Whole exome sequencing - SureSelect Human All Exon 50Mb Kit (Agilent
9	Technologies) coupled with Illumina short DNA sequencing - was performed with 3 μg
10	of collected genomic DNA for each sample. About 90-110 million paired-end reads were
11	produced for each sample. All sequenced DNA reads were mapped to the hg19 human
12	genome reference by Burrows-Wheeler Aligner (BWA) with default parameters. Single
13	nucleotide variant and indel calling were performed using the Genome Analysis Toolkit
14	(GATK, http://www.broadinstitute.org/gatk/). The alignments from BWA were
15	recalibrated with dbSNP v134 and the 1000 Genome Project Indel release
16	(http://1000genomes.org). The SNVs/Indels were called by GATK's UnifiedGenotyper
17	from the recalibrated data. Approximately 85,000 SNVs and 12,000 indels were reported
18	from individual samples. After a quality filter based on GATK annotation of strand bias,
19	mapping quality, and SNV cluster, about 65,000 SNVs and 3500 indels remained. All
20	SNVs/indels were annotated by either SeattleSeq Annotation
21	(http://snp.gs.washington.edu) and ANNOVAR
22	(http://www.openbioinformatics.org/annovar/). An in-house custom analysis pipeline was

used to process the variant annotation, filter, and prioritize for disease-causal variants.

24	Briefly, to distinguish potentially disease-causing variants from nonpathogenic variants,
25	we searched for nonsynonymous substitutions or frameshift indels. Existing databases
26	such as dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) and the NHLBI exome
27	variant server (http://evs.gs.washington.edu/EVS/) have been used to extract previously
28	reported frequency for any given variants and these were used to filter for novel or rare
29	variants. For both families, putative candidate genes were narrowed based on the
30	autosomal recessive inheritance pattern and the consanguinity status of the family.
31	Additionally, SIFT and PolyPhen were used to evaluate each candidate SNV for the
32	possible effect of an amino acid substitution on the structure and function of the
33	respective protein. The expression in immune cells was also used for candidate gene
34	prioritization. WES datasets will be deposited in the dbGaP database.
35	PCR and DNA sequencing
36	The coding sequences for <i>PGM3</i> were PCR amplified from genomic DNA by using
37	specific primers designed to flank the candidate loci. Amplicons were sequenced
38	on ABI 3700xl DNA Analyzer (Applied Biosystems) according to the manufacturer's
39	instructions.
40	RT-PCR quantification
41	The mRNA was isolated from activated T cells by QIAamp RNA Mini Kit (Qiagen) and
42	DNase treated with RNase-free DNase set (Qiagen) according to the manufacture's
43	
43	protocol. The mRNA was reverse-transcribed using SuperScript III First-Strand Synthesis
44	protocol. The mRNA was reverse-transcribed using SuperScript III First-Strand Synthesis System (Invitrogen). Gene expression was then quantified by real-time PCR with the

47	Immunoblot analysis
48	Standard methods were used to prepare cell lysates with SDS buffer, followed by
49	separation on NuPAGE 4-12% Bis-Tris gels (Invitrogen), transfer onto nitrocellulose
50	membrane, and immunoblotting. Proteins were detected using mouse anti-PGM3
51	monoclonal antibody (clone 1E2-1B12, No. WH0005238M1; Sigma-Aldrich) or mouse
52	anti–β-actin antibody (Sigma-Aldrich).
53	PGM3 structural analysis
54	SWISS-Model (http://swissmodel.expasy.org/) was used to model PGM3 based upon on
55	the structure of the closest available homolog, N-acetylglucosamine-phosphate mutase
56	from Candida albicans, which shares ~45% amino acid sequence identity to the human
57	protein. The protein structures of 2DKA (holo-enzyme), 2DKC (substrate-bound
58	enzyme), and 2DKD (product-bound enzyme) were all used to generate comparative
59	models of the enzyme in its different catalytic states. All 3D protein structures were
60	depicted using PyMOL (http://www.pymol.org/).
61	PGM3 enzyme activity assay
62	The standard assay mixture contained 50 mM Tris-HCl buffer (pH 8.0), 5 mM MgCl ₂ , 5
63	mM GlcNAc-6-P, 0.2 mM Glc-1,6-diP, and cell lysate from fibroblasts (25-50 μg of
64	protein) in a final volume of 100 μ l. The mixture was incubated at 37 $^{\circ}$ C for 0-120 min,
65	and at each time point, 5 µl reaction mixture was removed, frozen, and dried.
66	Subsequently dried samples were derivatized with hydroxylamine hydrochloride in
67	pyridine and N, O-bis[trimethylsilyl]trifluoroacetamide (BSTFA) and subjected to GC-
68	MS analysis to measure the production of GlcNAc 1-P. Standard curve was used to
69	quantify GlcNAc1-P.

70	Sugar phosphate analysis with GC-MS
71	Fibroblasts were harvested, extracted twice with 0.1 M acetic acid and sonicated briefly
72	on ice. Supernatants were collected after centrifugation, lyophilized and derivatized in a
73	similar manner to those described in the assay for PGM3 activity section (vide supra) and
74	subjected to GC-MS according to the method described elsewhere (Ichikawa et al,
75	manuscript in preparation).
76	Extraction and analysis of nucleotide sugars
77	Nucleotide sugars were extracted from fibroblasts and purified by an Envi-Carb carbon
78	column according to the methods by Rabina (Glycoconjugate J 2001). The extracted
79	nucleotide sugars were separated and quantitated by a reverse phase HPLC on an Inertsil
80	ODS-4 column according to the method by Nakajima (Glycobiology 2010). Each
81	nucleotide sugar was idetified by comparison with retention time of corresponding
82	standard. Nucleotide sugar levels were determined based on the peak area relative to
83	ATP.
84	Complementation with exogenous GlcNAc
85	Patients' fibroblasts and control fibroblasts were treated with or without 10 mM GlcNAc
86	in the presence of 10% dialyzed serum for 18hr prior to sugar nucleotide analysis.
87	Flow cytometric analysis of cytokine response
88	Human peripheral blood mononuclear cells (PBMC) were isolated by Ficoll-Hypaque
89	gradient separation. 10 ⁶ cells in RPMI 1640 medium supplemented with 10% FBS, 2 mM
90	L-glutamine and 1% penicillin/streptomycin) were stimulated with PMA (Calbiochem,
91	20 ng/mL), ionomycin (Calbiochem, 1 mM), and Brefeldin A (Sigma-Aldrich, 10
92	mg/mL) for 6-12 hours at 37 °C. Non-stimulated (NS) cells were incubated for 6-12

93	hours at 37 °C with Brefeldin A alone. After stimulation, intracellular cytokine staining
94	was performed as described previously ¹ . Briefly, cells were washed twice with PBS,
95	stained with Live/Dead Fixable Aqua Dead Cell Stain Kit (Invitrogen) for 15 minutes at 4
96	°C, and then with the following antibodies: CD45RO TexasRed-PE and CD27 PE-Cy5
97	(Beckman Coulter), CD8 APC-H7, CD3 AF-700 (BD Pharmingen), or CD3 Q-dot 605
98	(Invitrogen) for 30 minutes at 4 °C. Cells were washed once with PBS/0.5% BSA, fixed
99	with 4% paraformaldehyde for 5 minutes at room temperature, and washed two times
100	with PBS/0.5% BSA. Cells were then permeabilized with PBS-Saponin/5% non-fat dry
101	milk for 1 hour or overnight at 4 °C and stained with the following antibodies: CD4 PE-
102	Cy7, IFN-γ FITC, IL-4 PE, and IL-5 APC (BD Biosciences) or IL-17e660 (eBiosciences)
103	for 30 minutes at 4°C. Cells were washed once with PBS-Saponin and then run on a BD
104	LSR Fortessa. Data was analyzed using FlowJo software (Treestar) by gating on Live+
105	CD3 ⁺ CD4 ⁺ CD8 ⁻ CD45RO ⁺ CD27 ⁻ cells. Statistical significance was calculated from the
106	median value with a two-tailed Mann-Whitney test with GraphPad Prism 6.0 Software.
107	Flow cytometric analysis of T cell proliferation
108	The CellTrace CFSE Cell Proliferation Kit (Invitrogen) was used according to the
109	manufacturer's protocol. CFSE-labeled PBMC (200,000) were cultured in a single well
110	of a 96-well round bottom plate in 200 µL of RPMI 1640 medium (5 mM glucose)
111	supplemented with 10% FBS, 2 mM L-glutamine, and 1% penicillin/streptomycin. Cells
112	were stimulated for 4.5 days with SEB (1 $\mu g/mL)$ or PHA-P (5 $\mu g/mL)$ (both Sigma-
113	Aldrich). After stimulation, cells were washed twice with PBS, stained with Live/Dead
114	Fixable Aqua Dead Cell Stain Kit (Invitrogen), and then the following antibodies:
115	CD45RO TRPE and CD27 PECy5 (both Beckman Coulter), CD3 Q-dot 605 (Invitrogen),

116	CD152 PE, CD8 APC-H7, and CD4 PE-Cy7 (all from BD Pharmingen). Samples were
117	run on a BD LSR Fortessa and data was analyzed using FlowJo software.
118	MRI
119	MRI scans were performed at various time points during the evaluation using standard
120	clinical protocols on 1.5 and 3.0 tesla systems that were available at the time of
121	examination. T1-weighted, T2-weighted, and T2-FLAIR scans were reviewed by an
122	experienced neuroradiologist (DSR). As these scans were reviewed retrospectively,
123	specific scanning protocols were variable.
124	
125	FIGURE LEGENDS
126	Figure E1. Quantitative RT-PCR analysis of PGM3 expression in patients from both
127	families. Levels of PGM3 are shown normalized to $\beta\mbox{-actin.}$
128	Figure E2 . Elevated T _H 2 and T _H 17 cytokines in patients with <i>PGM3</i> mutations.
129	Representative dot plots of data shown in Figure 4. CD3 ⁺ CD4 ⁺ CD45RO ⁺ gated cells
130	producing IL-4, IL-5, IL-17 or IFN-γ in non-stimulated (NS) and PMA and ionomycin
131	(PMA/I) stimulated PBMCs from normal controls and patients.
132	Figure E3 . T cell proliferation of patients with <i>PGM3</i> mutations. Total PBMC from
133	normal controls and patients were labeled with CFSE and stimulated with either SEB
134	(1ug/mL) or PHA-P (5ug/mL) for 4.5 days. Cells were gated on CD4 ⁺ or CD8 ⁺ T cells
135	for flow cytometric analysis. Representative histogram of 2 patients tested in 4-6
136	different experiments.
137	
138	

139 1. Foster B, Prussin C, Liu F, Whitmire JK, Whitton JL. Detection of intracellular cytokines by flow cytometry. Curr Protoc Immunol 2007; Chapter 6:Unit 6 141 24.

142 143